"We're trying to achieve the same power densities, the same energy densities as traditional lithium ion batteries, but we need to make the footprint much smaller," says Chang.
To reach this goal, Chang is thinking in three dimensions in collaboration with Bruce Dunn other researchers at UCLA. She's coating well-ordered micro-pillars or nano-wires -- fabricated to maximize the surface-to-volume ratio, and thus the potential energy density -- with electrolyte, the conductive material that allows current to flow in a battery.
Using atomic layer deposition -- a slow but precise process that allows layers of material only an atom thick to be sprayed on a surface -- she has successfully applied the solid electrolyte lithium aluminosilicate to these nanomaterials.
http://www.medicaldaily.com/news/20101020/2777/batteries-smaller-than-a-grain-of-salt.htm via GearFuse | Photo (unrelated) via Flickr user Anton Fomkin used under Creative Commons license